วันพฤหัสบดีที่ 26 ธันวาคม พ.ศ. 2556

ฟังก์ชันกำลังสอง

            ฟังก์ชันกำลังสอง ป็นฟังก์ชันที่อยู่ในรูป    y   =   ax2 + bx + c   เมื่อ  a, b, c  เป็นจำนวนจริงใด ๆ  และ  a ¹ 0   ซึ่งกราฟของฟังก์ชันกำลังสอง  เรียกว่า  พาราโบลา
1)       2x2 + 3x – 10     เมื่อ   a = 2 ,  b = 3   และ  c = -1
2)      =   x2 + 1                เมื่อ   a = 1 ,  b = 0   และ  c =  1
3)     y  =  -x2 + 2x + 1       เมื่อ   a = -1 ,  b = 2   และ  c = 1
               
1.กราฟของฟังก์ชันกำลังสอง ที่กำหนดด้วยสมการ    y  =  ax2   เมื่อ  a ¹ 0
             กราฟของฟังก์ชันกำลังสอง   มีชื่อเรียกว่า  พาราโบลา  ซึ่งลักษณะของกราฟของฟังก์ชันขึ้นอยู่กับค่าของ  a , b  และ  c   และเมื่อ  a  เป็นบวกหรือลบ  จะทำให้ได้กราฟเป็นเส้นโค้งหงายหรือคว่ำ  และกราฟของฟังก์ชันกำลังสองที่กำหนดด้วยสมการ    y  =  ax2   เมื่อ  a¹ 0       เมื่อ  a  > 0   และชนิดคว่ำ   เมื่อ   a < 0    
 2.กราฟที่กำหนดด้วยสมการ   y  =  ax2 + k   เมื่อ  a ¹ 0  และ k ¹ 0 
 กราฟที่กำหนดด้วยสมการ   y  =  ax2 + k   เมื่อ  a ¹ 0  และ ¹ 0  จะเป็นกราฟพาราโบลาที่มีจุดวกกลับหรือจุดสูงสุดหรือจุดต่ำสุด  อยู่ที่  (0, k)  และแกนสมมาตรคือ  แกน  Y

3.  กราฟของ   y  =  a(x – h)2     เมื่อ   a ¹ 0  และ h > 0 
                      3.1)  กราฟที่กำหนดด้วยสมการ    y   =   a(x – h)2    เมื่อ  a ¹ 0  และ  h  ¹ 0   จะเป็นกราฟพาราโบลาที่มีจุดวกกลับหรือจุดสูงสุดหรือจุดต่ำสุดอยู่ที่  (h, 0) และแกนสมมาตรคือเส้นตรง  x = h
                     3.2)  กราฟของ   y  =  a(x – h)2     เมื่อ   a ¹ 0  และ  h < 0 
                                ถ้า  h < 0   จะได้สมการใหม่เป็น     y        =    a(x – (-h))2
                                                                                                  =    a(x + h)2

4.  กราฟของฟังก์ชันกำลังสองที่กำหนดด้วยสมการ  y  =  a(x – h)2 + k  เมื่อ  a ¹ 0 ,¹ 0  และ  ¹ 0
  
           จะเป็นพาราโบลาที่มีจุดวกกลับหรือจุดสูงสุดหรือจุดต่ำสุดอยู่ที่  (h, k)  และมีแกนสมมาตรคือ  เส้นตรง  x  =  h
               

5.  กราฟที่กำหนดด้วยสมการ   y  =  ax2 + bx + c   เมื่อ a ¹ 0   
การเขียนกราฟควรจัดสมการให้อยู่ในรูป   y   =   a(x – h)2 + k   จะทำให้เขียนกราฟได้ง่ายขึ้น 
                จากสมการ    y   =   ax2 + bx + c    สามารถเปลี่ยนให้อยู่ในรูป    y   =   a(x – h)2 + k   ได้โดยใช้ความรู้เรื่องกำลังสองสมบูรณ์  
          ตัวอย่าง    จงหาจุดวกกลับของกราฟของฟังก์ชัน     y   =   2x2 + 4x – 16     
               วิธีทำ     จาก             y      =     2x2 + 4x – 16
                                                        =     2(x2 + 2x – 8)
                                                        =     2{(x2 + 2x + 1) – 8 – 1}
                                                        =     2{(x + 1)2 – 9}  
                                                        =     2(x + 1)2 – 18
                                จะได้      h      =     -1  ,    k    =    -18
                                จุดวกกลับคือ   (-1, -18)

ไม่มีความคิดเห็น:

แสดงความคิดเห็น